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A New Solution for TE Plane-Wave
Scattering from a Symmetric Double-Strip
Grating Composed of Equal Strips

Dragan Filipovic

Abstract—The paper presents a new rigorous solution for the
problem of TE plane-wave scattering from a periodic planar sym-
metric double-strip grating, i.e., the grating which has two equal
strips per unit cell. The grating is placed at a dielectric interface
and is assumed to be perfectly conductive and infinite in length
and width. The formulation is based on a multimode equivalent
network representation and the relevant integral equation defined
on two separate intervals is rigorously solved by reducing to two
simpler equations with known solutions. From this a new simple
analytic expression is obtained for the coupling matrix elements
which involves no integration. Some computations based on this
new expression are carried out and the results are compared to
those obtained by the Riemann-Hilbert method and also to some
of the previously obtained single-strip results in the limiting case.

I. INTRODUCTION

RIGOROUS multimode network formulation for the

problem of transverse electric (TE) or transverse mag-
netic (TM) plane-wave scattering from a planar periodic
single-strip metal grating at a dielectric interface was pro-
posed in [I]. In that formulation the grating is represented
by a mutual coupling matrix whose elements correspond to
coupling between the different space harmonics, excited by
the grating. The incident wave as well as the reflected and the
transmitted harmonics are modeled by transmission lines. The
coupling matrix is in the form of an impedance matrix for the
aperture formulation, in which the electric field between the
strips is used as the unknown, and is an admittance matrix in
the obstacle formulation, which uses the current on the strips
as the unknown. Besides these two formulations there are two
possible wave polarizations, TE and TM. The coupling matrix
elements depend both on the polarization and the formulation
chosen. In each of the four possible combinations the coupling
matrix elements are related to an integral over the grating
unit cell of an unknown function which has to be found
from an integral equation. This integral equation has one
particular form for the TM-obstacle and TE-aperture cases,
and a different form for the TM-aperture and TE-obstacle
cases. A novel rigorous solution of the integral equation for a
single-strip grating was presented in [2] for the cases of TM-
obstacle and TE-aperture formulations. From this, an analytic
expression for the coupling matrix elements was obtained in
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the form of certain double integrals which have to be evaluated
numerically.

In [3] a new simple analytic expression for the coupling
matrix elements in the single-strip case was derived, which
compared to the corresponding expression in [2] involves no
integration. In this approach the starting integral equation was
the one for the TM-aperture and TE-obstacle formulations.

The method of [2] was extended in [4] to treat the case of a
double-strip grating, i.e., the grating which has two strips per
unit cell. Although the method is basically the same as for the
single-strip grating, the addition of the extra strip introduces
significant mathematical difficulties in the solution procedure.

In this paper the method from [3] is extended to the problem
of TE plane-wave scattering from a symmetric double-strip
grating, which has equal strips. The grating is placed at a
dielectric interface, and is assumed to be perfectly conductive
and infinite in two directions. A suitable formulation for
this problem is the TE-obstacle formulation, and the relevant
integral equation is the modified integral equation from [3].
The modification consists in removing a symmetrically spaced
interval from the basic domain of integration. The modified in-
tegral equation is solved by reducing to two simpler equations
with known solutions. One of them is Carleman’s integral
equation, and the other is a Cauchy-type singular integral
equation. Using the solution of the integral equation, a new
simple analytic expression for the coupling matrix elements is
obtained. This expression turns out to be similar in form to
the corresponding single-strip expression in [3].

Some computations based on this new expression have been
carried out and the results are compared to those obtained
by the Riemann-Hilbert method. Also a comparison is made
with previously obtained results for the single-strip grating as
a limiting case.

II. FORMULATION OF THE PROBLEM AND THE
SOLUTION OF THE RELEVANT INTEGRAL EQUATION

Geometry of the problem is shown in Fig. 1. A plane, TE
polarized wave is incident at an angle # upon a planar periodic
symmetric double-strip grating at a dielectric interface. The
grating has two equal strips per period p, the distance between
the strips within the grating unit cell is d;, and the strip width
is (d — d1)/2. An appropriate formulation is the TE-obstacle
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Fig. 1. A symmetric periodic double-strip metal grating at a dielectric
interface. The grating has two equal strips per unit cell. A plane TE polarized
wave is incident at an angle.
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Fig. 2. The rigorous equivalent network related to the structure shown in
Fig. 1.

formulation for which the equivalent network representation is
shown in Fig. 2. The quantities in this figure are given in [1].

The coupling matrix elements (which are admittances in
this case) are to be found from

1
—_—— jmg l
Youn = 55 F (§e’™ d¢ ey
where B is a constant [1] and
A=
p

The unknown function F,,(¢) which appears in (1) satisfies
the integral equation

7[F

In (1) and (2) the equal sign on the integral sign means that
the interval (—a, a) where

g’ = e~ 2
€ T ek e @)
2

sin

7T'd1
p

is removed from the basic domain of integration, i.e., the inte-
gration is performed on the two separate intervals (—A, —a)
and (a, A).
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Integral (2) is equivalent to the following two equations

A 1
% on(¢) In —————~d¢’ = cos n¢ 3)
—A

2|sin ﬂ
2
and
1
(€ ——————d¢ = —sin né 4)
j[ olsin £§-¢
2
where
‘Pn(g) :Ran(g) )

Consider first (3). It can be rewritten as

o Y
/—A (Pn(f)ln Y

d¢’
2 N
sin *—

A
+/ @n(€') In —————2_—6, d¢’ =cosné.  (7)
@ 2|sin T

It is easy to see from (7) that the unknown function ¢, (§)
must be an even function, since the cosine on the right-
hand side is an even function. Then, by making a change of
variables ¢ — —£’ in the first integral, after some elementary
transformations, (7) simplifies to

N ,
7 1 ’
/a en(€') In oo & —cos | d¢’ = cos né¢

which in turn, by a change of variables

9/
(- —_
cos £ = i
0
(- —_
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2v 0
/ <I>n(6’) In [9’ - 0[d9’ = -T, 2 (8)
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where
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@n | arccos 3
Bl0) = — =5 - ©)
u=cos A
U= COS a
and

T (z) = cos (n arccos z)

is the Chebyshev polynomial of the first kind.



1992

Equation (8) is the known Carleman’s equation. Its closed-
form solution is [5]

®,(0) =
1

(0 — 2u)(2v — 0)
20 V0= 2u)(2v =0 T, (6 ) a6

—v.p./
2u 4
’
T (9 ) a8
1 2

- 10
I P e (6= 2u) (20— 0) 1o

where v.p. means principal value.
Substituting in (10)®,,(#) from (9) and returning to the old
variables &, ¢, yields

onlé) =

—sin &
72\/(cos & — u)(v — cos €)
[ / V/(cos & —u)(v — cos &) n sin ng d¢’

cos £’ —cos &

cos n&’ sin & d¢’
\/cosf’—u Y(v — cos &)

(1D

V—U

The integrals appearing in (11) are evaluated in Appendix L
They are

Vp/ V/(cos & —u)(v — cos &)n sin n&’ d¢’

cos &' —cos &

min

Y p;) Pinj-p(u, v) sin(p + 1)§ (12)
4 cos n¢’ sin &' d€’
o /(cos & =u)(v—cos &)
- g [@n(u, 0) = Qnosz(u, v)] (13)

where py(u, v) and Qg(u, v) are some polynomials in two
variables defined in Appendices I and II, respectively.
From (11)—(13) the final solution of (3) is obtained as 12

9071(5)‘: PYR— —ein ¢
27 In V/(cos € —u)(v — cos €)
: [Qn(uﬂ U) - Qn—z(uv ’U)]

[n|

* 2rv/(cos € — u)(v — cos €)

In]
)" P lnj—p(u, ) sin (p + 1)E. (14)
p=0
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Consider now (4). Again, the interval of integration is
broken up into two intervals (—A, —a) and (a, A), and a
change of variables { — —¢&' is made in the first integral.
Then, taking into account that the unknown function ,,(£) is
an odd function, (4) can be rewritten as

A sin 3 ; ¢
[l l/)n(é- ) In ' 5_—5/

sin
2

d¢' = —sin n€

(15)

which upon ditferentiation with respect to £ becomes

/ $nl€)

where the integral has to be understood in the sense of
principal value. Introducing here new variables

—sin f !

€08 f’ cos & 4’ = —n cos ng

cos& =40,
cosé =46
yields
/uv U, (6) 9/d€/9 = nT,(6) (16)
where
V., (0) = ¢n(arccos 6). 17

Equation (16) is a Cauchy-type singular equation whose

closed-form solution, unbounded for @ = % and 8 = v is
given by [5]
‘ljn(e) =
o
(0 —u)(v—~0)
l / V0 =) 11—9’ nT(#')d8
. V. p n
(18)

where ¢, = ¢,(u, v)(n = %1, £2,--.) are constants to be
determined. It is obvious from (16) and (18) that ¢_,, = —c¢,
since W, should change sign when n changes sign.

Substituting in (18) W,,(9) from (17) and returning to the
old variables &, &', yields

1
V/ (cos € —u)(v — cos &)

1 A
. ;Q—Vp /a

.\/(cos & —u){v—cos £)n cos n& sin & d¢’ n

cos & —cos £

19)

The integral in (19) is evaluated in Appendix L It is as shown
in (20) at the bottom of the following page. Substituting this
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into (19) gives

Pn(8) =

n

2m+/(cos & — u)(v — cos &)
In|
% Pinj+1 + Z Pin—p COS (P + 1)¢
p=0
Cn

~ Vleos E—u)(v - cos £)

where for n = =1, the first term inside the brackets should
be replaced by 1 + 3 7,.
If new constants C,, = C,,(u, v) are defined by

€2y

n =41
Co=1<1

_ (22)
2 P41 = == #+1

the solution of (4) given by (21) can be rewritten as

¢n(£) -

n
214/ (cos € — u)(v — cos §)
In|
C’|n|(u’7 U) + Z ﬁ|n\—p(u7 U) cos (p + 1)£ ’
p=0
a< &< A

(23)

The constants C,,(n = 1, 2, ---) defined by (22) do not
depend on the sign of n, i.e., C—, = C,, which is indicated
in (23) by writing |n| in the subscript of C.

The constants C|,| can be evaluated numerically as follows.
The solution ¥, (£) given by (23) is substituted into (15)
thereby giving an identity for ¢ < £ < A. Choosing an
arbitrary ¢ from this interval and numerically evaluating the
integral in (15) one obtains an equation for determining C)y,.

1II. DETERMINATION OF THE COUPLING MATRIX ELEMENTS

From (1), (5), and (6) the coupling matrix elements are

S | —a A ]
Yo :ﬁ{</_A +/a )[%(E)ﬂ%(&)l

-(cos m& + § sin m&) d§ } 24)

Since ¢, (£) is an even function and 1),,(£) is an odd function
(24) is simplified to

1 A .
Yo = 552 [ [on(€) c08 mé = u(€) sin ne] de.
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Substituting here ¢, (£) and ¢, () from (14) and (23) and
using (A10) gives

1 _ (Qn - Qn—?)(Qm -

Y =55 U — U
21n

Qm—Z)

2B

,—2“ 2_: |n|-p Qm+p Q'm—p—Z) ~_”7’C(|71|Q'm—1

I

~5 2 Pini-p @mip = Q- @)
p=0

m+p)

"where the arguments u and v are omitted.

Finally, considering in (25) the cases n > 1 and n < —1
separately, and using (All) yields

Ymn = i
2B
_ (Qn - Qn—2)(Q_m - Qm—2) _ nC|n|Qm—1
Y PrpQ@-mipr 21
+n{ P70 (26)

~n
_Zr)—n—me‘f’P’ n < -1
=0

Relation (26) is a new simple analytic expression for the
coupling matrix elements related to TE plane-wave scattering
from a symmetric double-strip grating which has equal strips.
Note the similarity of (26) with the corresponding expression
in [3] for the single strip grating.

IV. NUMERICAL RESULTS

Using the new expression for the coupling matrix elements
and the equivalent network shown in Fig. 2, some computa-
tions have been carried out for TE plane-wave scattering from
a symmetric double-strip grating shown in Fig. 1.

Fig. 4 shows the transmission coefficient in the lowest (n =
0) mode versus the relative period p/Ag for different values
of parameter d/p. The grating is in free space, and the other
parameters are § = 0 and d; /p = 0.5. In these computations
modes of order up to +4 are included. The values obtained by
the Riemann—Hilbert method [6] are indicated by dots. As can

/A v/(cos & — u)(v — cos &) n cos né’ sin ¢’ d¢’ _

cos € —cos &

||
nr {1 1_ —
Y (5 + 5 Paper + D Pnjp 08 (P + 1§, = ﬂ)
p=0
nr [ 1 I
=5 | 3Pl + 2 Plal—p c0s (p+ 1)§, n# +1

p=0
(20
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be seen, the agreement is very good. If d/p = 1, the double-
strip grating from Fig. 1 becomes a single-strip grating, so it
should be expected that the curve with d/p = 0.99 be very
close to the corresponding single-strip curve, obtained by using
the new solution from [3]. Indeed, the two curves are almost
indistinguishable.

Fig. 5 shows the normalized transmitted power versus the
relative period for § = 15°, arz) = 2, and di/p = 0.5, and
for different values of parameter d/p. Modes of order up to
46 are included. Again, the curve with d/p = 0.99 practically
coincides with the corresponding single-strip curve from [3].

V. CONCLUSION

Starting from the multimode network representation for
the problem of TE plane-wave scattering from a symmetric
periodic planar double-strip grating composed of equal strips,
and placed at a dielectric interface, a new simple analytic
expression for the coupling matrix elements has been derived.
This expression involves no integration and is similar in form
to the corresponding single-strip expression obtained earlier.
The relevant integral equation is defined on two separate
symmetrically spaced intervals and is solved by reducing to
two simpler equations with known solution. Comparison with
the Riemann—Hilbert solution shows a very good agreement.
Also, the results obtained with the present method coincide
with the previously obtained single-strip results in the limiting
case.

APPENDIX I

The integrals encountered in (11) and (19) which have to
be evaluated are

(cos & — u)(v — cos &) n sin n&' d¢’
I_/ \/ cosf’—coi)f £
cos né’ sin &' d¢’
v/ (cos & — u)(v — cos &)
/ v {(cos & —u)(v — cos &) n cos n&’ sin & d¢’

cos & —cos £

I, =

The integrals I; and I3 are understood in the sense of principal
value. The symbol v.p. indicating this is omitted throughout
the Appendix.

Consider first the integral [;. It is invariant with respect to
the sign of n so that positive values of n are assumed. The
following relation

/ V/(cos & — u)( )(v —cos {')n sin n&' d¢’

cos & —cos &
it

V/(cos & —u)(v —cos &) n sin ng de¢’
4003— si

GET
2

sin >

2

= f__Z-i-faA and by
—¢&’ in the first integral.

can be easily verified by writing 5Ej{
making a change of variables £ —
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Therefore
I - Imj[ V/(cos & —u)(v — cos €) &€ dg’
4cos & —¢ [1—cosé
2 2

(Al)

The integral on the right-hand side of (A1) can be evaluated
by the residue techniques. It is first transformed by putting
e = z, e = z, yielding

j[ V(cos & = u)(v — cos &) e’ de’

& —¢ J1—cosé
2 2

_92./% V(22 = 2uz + 1)(22 = 20z + 1) 2" L dz
2¢3A; el |

(A2)

The contour of integration consists of two symmetrically
spaced arcs of the unit circle |z] = 1. The end points of the
arcs are 8%, a*, a, and 3 where « = €%, 3 = ¢ and the star
means complex conjugate value. These points are the branch
points of the two-valued function

z) = /(22 = 2uz + 1)(2% = 20z + 1).

This function becomes single-valued by making two cuts along
the unit circle—one between the points «* and 8*, the other
between the points « and 3. The condition w(0) = 1 specifies
one of the two possible branches, and the contour of integration
goes along the inner lips of the two cuts. Let I be the closed
contour going along the inner and outer lips of the cuts in
the clockwise directions (Fig. 3). Then, the integral along I" is
equal to one half of the integral along [, since the square root
changes sign on the outer lips. The integral along the closed
contour I” can be evaluated by means of the residues at the
two singular points z = 0 and 2z = co. Therefore

7[ /(cos f’—u (v — cos &) erm¢’ de’

—-€& [1—cos¢
2 V™2
—2\/?0% -2mj[Re s f(1) + Re s f(00)] (A4)

where f(z) is the function under the integral sign on the right-
hand side of (A2). The residue at z = 1 is easily found to
be

(A3)

2/ (1 —u)(l—w)
1—Z0 )

Resf(l) =

To find the residue at z = oo the function f(z) has to be
developed into the Laurent series for |z] > 1. Let p,(u, v)
(k=0,1,2,--) be the coefficients in the Taylor expansion
of the function w(z) defined by (A3)

2) =Y By, v)2*,
k=0

These coefficients are found in Appendix II. For |z| > 1, one
can replace z by 1/z and then apply (A6). The result is

(e o]
w(z) =23 pylu, v)z,
k=0

(A5)

|z| < 1. (A6)

|z] > 1.
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Fig. 3. The contours of integration " and I'" in the complex plane.

Now
w(z)z" ! 2 i- —k n—1
< =% [7%
(z—20)(z — 1) =
J R,
; g A ; ;) Zn 2
"N B TR, 2> 1 (A7)
k=0
where

k P
ﬂk=z—,5k_pzz

p=0 1=0

The residue at z = oo is the coefficient of 1/z in the Laurent
series (A7) with the opposite sign. It is

Resf(oo) = - ﬂn

:_anpz

1=0

(A8)

From (A4), (AS), and (A8)
7[ V/(cos é’—U)(v—cos g) e de’

—¢ ll—cos ¢
2

2 —u)(1
1—Z0

N [ Z Prp Z ZO}

=0

Replacing here zo by e’¢, taking the imaginary parts and
substituting into (Al) yields

I = Z Pr—p(U; V)

2 cos

Z coS (i—}- -21-) €.

p=0 =0

If the nominator and the denominator on the right-hand side are
multiplied by sin (£/2), after some elementary transformations
I, is simplified to the form shown in (12) (n is replaced by
In| since Iy is invariant with respect to the sign of n).
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Fig. 4. The transmission coefficient in the lowest (n = 0) mode versus the
relative period. The parameters have the following values: dy /p = 0.5,6 =0,
and 5(1) = "(2) = 1. The parameter d/p is varied. The values obtained by
the Rlemann—Hﬂbert method are shown by dots. The curve with d/p = 0.99
practically coincides with the corresponding single-strip curve.

d/p=0.75

03f 0.99 1

0% o5 1 15 2z 25 3 35 4
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Fig. 5. The transmitted power in the lowest mode (normalized to the
incident power) versus the relative period. The parameters are: dq /p = 0.5,
6 = 15°, s(rl) =1, and EE«Z) = 2. The parameter d/p is varied. The curve
with d/p = 0.99 is practically indistinguishable from the corresponding
single-strip curve.

Before proceeding to the evaluation of I» it is useful to
define polynomials Q(u, v) as the coefficients in the Taylor
expansion of the function 1/w(z) for |z| < 1

— =3 Qulu, v),

z| < 1. (A9)
w(z) = 12l
Since
1 o
—_— = Py(u)z®, <1
V22 ~2uz+1 ;) w(u) 17l
and
—_—— Po(v)z®, |z| <1
e =3 B I

k=0
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the coefficients @ in (A9) can be found as
k
Qulu, v) =Y Pap(u)Pp(v).
p=0

These polynomials have an integral representation which en-
ables to define them for negative values of n. This represen-
tation is derived in [6] and has the following form

oA sin(n + Do de
2= — . A10
Qn(’U/, U) T/, \/(COS o — U)(’U ~ cos (,D) ( )
Obviously, from (A10)
Q—l(ua U) =0
Q—n(ua U) = - Qn—Z(uﬂ 'U)7 n > 2. (All)

The first few polynomials (},, are
QO = 17
Ql =u+v,
Q2 =3(u* + %) +uv — 1,
Q3 = 5(u® +v*) + 3uv(u+v) — 2(u+v).
Now, the integral I, can be evaluated. It is first transformed as
1[4 sin(n+1)¢ —sin(n —1)¢&
2 Jo  4f(cos & —u)(v —cos &)
Then, using (A10) yields the result shown in (13).

Finally consider the integral 3. Again, positive values of
are assumed since for negative values I3 only changes sign.
By a simple trigonometric identity I3 can be rewritten as the
difference of two integrals which both have the same form

as the integral I;. Therefore using (12) followed by some
elementary transformations yields the result shown in (20).

I =

APPENDIX B

In this appendix, the polynomials p,(u,v) (¢ =
0,1, 2, ---) are evaluated. One has [3]

Vz2—2uz+1= Z pr(w)z®,  |z] <1 (B1)
k=0
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where pg = 1, p1(u) = —u and
pn(u) = Pp(u) = 2uPp_1(u) + Py—o(u), n>2

where Py’s are the Legendre polynomials.
Similarly

V22 —2uz+1= Z pr(v)2F, 2] < 1. (B2)
k=0

Multiplication of (B1) and (B2) and comparison with (A6)
yields

Pr(u, v) = Z Pre—p(u)pp(v)
p=0

The first few p;’s are

Po =1,

pr=—(u+v),

Py = — 5(u® +0%) uv + 1,

Ps = — 2(v® +v*) + 2uv(u + v).
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